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Abstract— This paper studies the problem of online pa-
rameter estimation for cyber-physical systems with binary
outputs that may be subject to adversarial data tampering.
Existing methods are primarily offline and unsuitable for
real-time learning. To address this issue, we first develop
a first-order gradient-based algorithm that updates param-
eter estimates recursively using incoming data. Consider-
ing that persistent excitation (PE) conditions are difficult
to satisfy in feedback control scenarios, a second-order
quasi-Newton algorithm is proposed to achieve faster con-
vergence without requiring the PE condition. For both al-
gorithms, corresponding versions are developed to handle
known and unknown tampering strategies, and their param-
eter estimates are proven to converge almost surely over
time. In particular, the second-order algorithm ensures con-
vergence under a signal condition that matches the minimal
excitation required by classical least-squares estimation
in stochastic regression models. The second-order algo-
rithm is also extended to an adaptive control framework,
providing an explicit upper bound on the tracking error
for binary-output FIR systems under unknown tampering.
Three numerical simulations verify the theoretical results
and show that the proposed methods are robust against
data tampering. Finally, the approach is validated via a vehi-
cle emission control problem, where it effectively improves
the detection accuracy of excess-emission events.
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I. INTRODUCTION

Cyber–Physical Systems (CPS) connect people, machines,
environments, and computational components, enabling close
interaction between the physical and digital worlds [1], [2]. By
combining sensing, communication, computing, and control,
CPS can respond to real-time changes, adapt to dynamic
environments, and continuously improve system performance.
These features make CPS a core technology in many industrial
applications, such as automated manufacturing, intelligent
transportation, healthcare, energy systems, and smart infras-
tructure [3], [4].

Despite their advantages, CPS often face cybersecurity
risks. These vulnerabilities mainly stem from their distributed
structures and use of inexpensive sensors and communication
devices that frequently lack strong protection [5]–[7]. Such
weaknesses allow attackers to disrupt operations, making
security crucial in CPS design [8]. Among various cyber
threats, Denial-of-Service (DoS) and Data Tampering attacks
are particularly common and harmful [5]. DoS attacks block
or delay data transmission [9], while Data Tampering attacks
subtly alter transmitted data, making detection difficult [10].
These attacks can lead to wrong decisions, reduced per-
formance, or system failures, potentially causing production
delays, financial losses, and safety incidents [11], [12].

Several methods have been proposed to strengthen CPS
security. For instance, Bayesian-based defense methods detect
deceptive attacks by continuously updating the system’s belief
about potential threats [13], [14]. Other studies have developed
proactive schemes to protect critical infrastructures, such as
power grids, against dynamic attacks [15]. Research on data-
injection attacks has considered trade-offs between attack
detection and control performance [16], and also examined
balancing security with privacy in connected systems [17].
Adaptive control techniques have been widely explored to
maintain stable system operation even if sensors or actu-
ators are compromised [18]–[20]. Additionally, secure-by-
construction approaches have been developed to design CPS
with built-in security measures, reducing vulnerabilities from
the start [21], [22].

In addition to security risks, CPS also commonly face
challenges related to quantization. Due to cost constraints
and limited bandwidth, sensors in many CPS often send
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quantized measurements rather than exact values. Binary out-
puts from switching sensors or optical detectors are typical
examples [23]. While quantization helps reduce data size
and bandwidth usage, it also introduces nonlinearities that
complicate system identification and control [24]. To address
this challenge, researchers have developed a variety of identi-
fication methods tailored for quantized systems [25], including
studies on binary sensor applications [26]–[28], worst-case
estimation techniques [29], and methods aimed at achieving
asymptotic efficiency [30].

Beyond quantization, Data Tampering attacks also further
complicate the identification problem in CPS. Researchers
have proposed various methods to address such attacks
in binary-output systems. For instance, [31] developed a
compensation-based algorithm that ensures strong consistency
and asymptotic normality under tampering, later extending it to
multi-dimensional systems [32]. To handle packet loss during
transmission, [33] proposed algorithms for both known and
unknown loss rates, integrating compensation mechanisms to
reduce communication costs. More recently, [34] proposed a
maximum likelihood estimation (MLE) approach using an iter-
ative Expectation-Maximization algorithm for parameter iden-
tification under tampering. Furthermore, [35] explored finite
impulse response (FIR) systems under random replay attacks,
presenting consistent estimation algorithms and asymptotically
optimal defense strategies.

Despite these advances, many existing methods rely heavily
on offline processes such as empirical measure estimation
or MLE, which may not be suitable for real-time CPS that
continuously generate data. This gap highlights the need
for online identification algorithms that can update estimates
dynamically while maintaining robustness against tampering.
To address this challenge, this paper extends our previous
work [36] by presenting a unified identification framework. We
propose both first-order and second-order recursive algorithms
that handle cases with known attack strategies and scenarios
requiring online estimation of tampering statistics.

The main contributions of this paper are summarized as
follows:

• This paper presents a first-order gradient-based algorithm
for parameter estimation under data tampering attacks.
The convergence properties of the algorithm, including
almost sure convergence and mean-square convergence,
are established. To handle more realistic scenarios, a
periodic extra-insertion defense mechanism is introduced
to estimate tampering statistics during the identification
process and ensure convergence under unknown attacks.

• A projected second-order quasi-Newton algorithm is pro-
posed to handle both known and unknown tampering
strategies, achieving faster convergence. Integrated into
an adaptive control framework, the algorithm provides ex-
plicit asymptotic bounds on the estimation error, tracking
error, and cumulative regret. These bounds are established
under the weakest excitation condition in [37], without
requiring persistent excitation (PE) condition.

• The proposed methods are applied to vehicle emission
control, using a dataset of diesel vehicle emissions
collected in Hefei, China. Transformer-based features

are used as regressors in the set-valued model, where
“over-limit” and “non-over-limit” cases are modeled as
binary outcomes. Data tampering, such as underreporting
excessive emissions, is captured via probabilistic label
manipulation. The results show improved accuracy in
identifying compliant and non-compliant vehicles, even
under adversarial conditions.

The paper is organized as follows. Section 2 introduces the
system and examines identifiability under tampering attacks.
Section 3 presents a first-order gradient-based identification
algorithm, establishes its convergence, and proposes a peri-
odic insertion scheme to handle unknown attack strategies.
Section 4 develops a second-order Newton-type algorithm and
provides theoretical bounds on estimation error, cumulative
regret, and tracking performance. Section 5 offers numerical
simulations and a real-world case study on vehicle emission
control. Section 6 concludes the paper and outlines future
directions.

Notation: Let Z+ be the set of positive integers. For a
positive integer k, define [k] = {1, 2, . . . , k}. For a set S ⊂ Z+

and an integer l, define lS = {i : i = l × j, j ∈ S}. For a
sequence of sets {Sk}k≥0, if l > j, then

⋃j
k=l Sk = ∅.

II. MODEL FORMULATION AND IDENTIFIABILITY

A. Model Description Under Tampering Attack
This subsection introduces the identification problem of

stochastic FIR systems under tampered binary observations.
Consider the following system:

yk+1 = φT
k θ + wk+1, k = 0, 1, . . . , (1)

where θ ∈ Θ ⊆ Rp is an unknown but time-invariant
parameter vector of known dimension p, φk ∈ Rp is the
regressor vector composed of current and past input signals,
and wk+1 is a stochastic noise sequence with zero mean. Let
Fk denote the natural filtration defined as

Fk ≜ σ {φ0, . . . , φk, w0, . . . , wk} , k ≥ 0. (2)

In this setting, the system output yk+1 is not directly observ-
able. Instead, it is accessed through a binary sensor with a
known threshold C ∈ R, which generates the binary-valued
signal:

s0k+1 = I[yk+1≤C] =

{
1, yk+1 ≤ C,

0, otherwise.
(3)

However, this binary signal is transmitted over a potentially
compromised communication channel. Due to data tampering
attacks, the received signal sk+1 may differ from the original
s0k+1, and is modeled by the following flipping probabilities:{

Pr{sk = 0 | s0k = 1} = p,

Pr{sk = 1 | s0k = 0} = q,
(4)

where p, q ∈ [0, 1) represent the attacker’s flipping strategy.

Identification Objective. The objective of this paper is
to design a recursive algorithm to estimate the unknown
parameter θ based on the sequence of regressors {φk}k≥0 and
the possibly tampered binary observations {sk}k≥. Further,
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Fig. 1. Closed-loop control system flowchart with tampering attack and
estimation/control centers

if control actions are required, the estimation result θ̂ from
the estimation center is transmitted to the control center.
The control center then utilizes this estimated parameter to
design the controller input uk, forming a closed-loop feedback
system. The flow of information and control within this closed-
loop system, incorporating potential data tampering attacks, is
illustrated in Fig. 1.

Remark 2.1: In many secure control architectures, the com-
munication network is logically divided into an “downlink”
(from the sensor to the estimation center) and a “uplink” (from
the control center to the actuator/execution unit). By imple-
menting the uplink over a protected, dedicated channel—such
as a private optical-fiber link, a local bus, or an encrypted
virtual tunnel—one can safely assume that the control signal
uk is not subject to tampering during transmission. As a result,
the integrity risk is primarily concentrated on the downlink
path that conveys the binary sensor measurements s0k through
a potentially untrusted network [38], [39].

B. Identifiability Analysis

Let Fk(·) denote the conditional distribution function of the
noise wk+1 given the filtration Fk. Based on the law of total
probability and the tampering model in (4), the conditional
probability of observing sk+1 = 0 can be computed as

P (sk+1 = 0 | Fk)

=P (s0k+1 = 1 | Fk) · P (sk+1 = 0 | s0k+1 = 1,Fk)

+ P (s0k+1 = 0 | Fk) · P (sk+1 = 0 | s0k+1 = 0,Fk)

=pFk(C − θTφk) + (1− q)
[
1− Fk(C − θTφk)

]
=(p+ q − 1)Fk(C − θTφk) + 1− q. (5)

Similarly, the conditional probability of sk+1 = 1 is given by

P (sk+1 = 1 | Fk) = 1− P (sk+1 = 0 | Fk)

= (1− (p+ q))Fk(C − θTφk) + q. (6)

Identifiability. This subsection discusses the identifiability
of the binary-output system defined in (1)–(4). From equa-
tions (5)–(6), it can be observed that when p + q = 1, the
dependence on the conditional distribution Fk(·) vanishes.
In this degenerate case, the distribution of the observations
becomes independent of θ, making parameter identification
impossible. Therefore, a necessary condition for identifiability
is: p+ q ̸= 1.

In addition, to recover the unknown parameter θ from the
sequence of binary observations, the regressor sequence {φk}

must be sufficiently informative [40]. A formal excitation
condition will be specified in subsequent sections, depending
on the structure of the identification algorithm.

III. FIRST-ORDER GRADIENT IDENTIFICATION
ALGORITHM

A. Known Attack Strategy

A first-order recursive identification algorithm for FIR
systems under binary observations with data tampering was
introduced in earlier work [36]. This subsection briefly reviews
the algorithm, including its motivation, formulation, and main
convergence results. Complete proofs are presented in the
Appendix.

1) Motivation and Algorithm: Classical identification meth-
ods, such as stochastic approximation (SA), yield consistent
parameter estimates as the data length increases. However,
when only binary observations are available and such data
may be tampered, traditional approaches are no longer appli-
cable. To compensate for the limited information, additional
assumptions-such as knowledge of the noise distribution-are
required.

The key idea is based on the fact that, in system identifi-
cation, the conditional variance of wk+1 is minimized when
using the true parameter θ. For the system (1), we have:

Var(wk+1|Fk) = E
[
(yk+1 − θTφk)

2 | Fk

]
≤ E

[
(yk+1 − βTφk)

2 | Fk

]
, ∀β ∈ Θ.

Under appropriate excitation conditions on {φk}, the equality
can be held if and only if β = θ. This observation allows
us to reformulate the identification problem as the following
stochastic optimization:

min
β∈Θ

I(β) := 1
2E
[
(yk+1 − βTφk)

2 | Fk

]
. (7)

To solve the above problem, stochastic gradient descent
(SGD) can be applied by using a single sample at each step.
Specifically, the parameter is updated based on the observed
pair (yk+1, φk) as:

θk+1 = θk − bk∇βI(β, yk+1, φk)
∣∣
β=θk

= θk + bk(yk+1 − θTk φk)φk,

where {bk} is a sequence of diminishing step sizes. This
recursion corresponds to the classical first-order stochastic
approximation algorithm, which is widely used in system
identification [41].

In the presence of tampered binary outputs, as described
by the system (1) with binary observations (3) and potential
tampering (4), a similar strategy can be employed to develop
a recursive identification algorithm. At each time step k, the
conditional expectation of the observed binary output sk+1 is
given by

E(sk+1 | Fk) = (1− (p+ q))Fk(C − θTφk) + q. (8)

As in the case of yk+1, the conditional variance of sk+1 is
minimized when β = θ. This also allows the identification



4 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

problem to be formulated as a stochastic optimization task,
using a tampered binary loss function:

min
β∈Θ

ITB(β, sk+1, φk) (9)

:= 1
2E
((
sk+1 −

[
(1− (p+ q))Fk(C − βTφk) + q

])2 | Fk

)
.

The gradient of the loss function with respect to β is

∇βITB(β, sk+1, φk) = −(1− (p+ q))fk(C − βTφk)

×
(
(1− (p+ q))Fk(C − βTφk) + q − sk+1

)
φk.

To ensure that fk(C − βTφk) does not approach zero, it is
natural to constrain β within a compact parameter set Θ. This
motivates the use of a projection operator, defined as follows.

Definition 3.1: Let Ω ⊆ Rn be a convex compact set. The
projection operator ΠΩ(·) is defined by

ΠΩ(x) = argmin
ω∈Ω

∥x− ω∥, ∀x ∈ Rn.

Based on the above analysis, we propose a first-order recur-
sive projection algorithm, referred to as the Gradient Recursive
Projection Algorithm for Tampered Binary Observations with
Known Probabilities (GRP-TB-KP).

Remark 3.1: The loss functions in (7) and (9) are not
limited to variance-type or squared error forms. In general,
any differentiable loss function L(β, yk+1, φk) can be used,
provided it satisfies L(β, yk+1, φk) ≥ L(θ, yk+1, φk), which
guarantees that the minimum is achieved at the true parameter
θ. Under this condition, stochastic gradient descent can still
be employed to obtain consistent estimates. An important
example is the negative log-likelihood function.

Algorithm 1 GRP-TB-KP

Require: Initial estimate θ̂1 ∈ Θ, step-size sequence {bk}k≥1,
constant β > 0

1: for k = 1, 2, . . . do
2: Compute:

s̃k+1 = β(1− (p+ q))

×
(
(1− (p+ q))Fk(C − θ̂Tk φk) + q − sk+1

)
. (10)

3: Update parameter estimate:

θ̂k+1 = ΠΘ

{
θ̂k + bkφks̃k+1

}
. (11)

4: end for

2) Convergence Properties: The convergence of the pro-
posed algorithm is established under the following assump-
tions.
Assumption A1. The unknown parameter satisfies θ ∈ Θ ⊆
Rn, where Θ is a convex compact set. Let B := supν∈Θ ∥ν∥,
where ∥ · ∥ denotes the Euclidean norm.
Assumption A2. The conditional distribution and density
functions of the observation noise sequence {wk}, given Fk,
are known and denoted by Fk(·) and fk(·), respectively.
Assumption A3. (a) The regressor sequence {φk} satisfies

sup
k≥1

∥φk∥ ≤M <∞. (12)

(b) There exist an integer h ≥ p and a constant δ > 0 such
that

1
hE

[
k+h−1∑
l=k

φlφ
T
l

∣∣∣∣∣Fk−1

]
≥ δI, ∀k ≥ 1, (13)

where I is the p× p identity matrix.
Assumption A4. The step-size sequence {bk} satisfies:

∞∑
k=1

bk = ∞, lim
k→∞

bk = 0, and bk = O(bk+1).

Assumption A5. The conditional density functions {fk(·)} of
the noise {wk}, given Fk−1, satisfy

f := inf
k≥1

inf
|x|≤C+MB

fk(x) > 0.

Remark 3.2: Assumption A2 ensures that the statistical
properties of the observation noise are known in advance,
which is a standard assumption in the literature on binary iden-
tification (e.g., [25], [42]). Assumption A3 places conditions
on the input sequence {φk}. Condition (13), known as the
“conditionally expected sufficiently rich condition,” ensures
that the regressor sequence contains enough variability to
allow parameter identifiability. Compared to the classical PE
condition, it is weaker but still sufficient for convergence.

Remark 3.3: Assumption A4 is standard in stochastic ap-
proximation and online optimization. These conditions ensure
that the step size remains effective over time, decays gradually,
and avoids premature vanishing. They strike a balance between
convergence stability and parameter adaptation. Assumption
A5 guarantees that the noise density does not vanish within
the relevant domain, preventing degenerate cases. The constant
f provides a uniform lower bound, ensuring that the noise
remains sufficiently dispersed in the estimation region.

Denote the estimation error by θ̃k = θ̂k − θ, k = 1, 2, . . . .
The following theorems establish the almost sure convergence,
mean-square convergence, and convergence rate of the pro-
posed GRP-TB-KP algorithm.

Theorem 3.1 (Convergence): Consider system (1) with
binary-valued observations (3) and tampering attacks (4).
Under Assumptions A1–A5, the parameter estimate generated
by the algorithm (10)–(11) satisfies

lim
k→∞

E[∥θ̃k∥2] = 0.

Moreover, if
∑∞

k=1 b
2
k < ∞, then the estimate θ̂k also

converges almost surely to the true parameter:

lim
k→∞

θ̃k = 0, a.s.
Theorem 3.2 (Convergence Rate): Under Assumptions

(A1)-(A5), the algorithm (10)–(11) achieves the following
mean-square convergence rates:

• If the step size is chosen as bk = 1
kγ with 1

2 < γ < 1,
then

E[∥θ̃k∥2] = O

(
1

kγ

)
.

• If bk = 1
k and the gain parameter satisfies β >

1
2(1−p−q)2 fδ , then

E[∥θ̃k∥2] = O

(
1

k

)
.
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Proof: See Appendix I.

B. The Attack Strategy is Unknown
In practice, the tampering probabilities (p, q), which char-

acterize the attack strategy, are typically unknown to the
estimator, making existing methods that require their values
inapplicable. To address this, we adopt a more practical
approach where (p, q) are estimated online along with the
system parameters. Following Theorem 3.1 and the idea
in [31], we substitute the real-time estimates of (p, q) into
the identification algorithm.

1) Algorithm Design: We now describe the design of the
algorithm, starting with its core idea.

Main idea. The approach introduces a known binary se-
quence (consisting of 0s and 1s) into the transmission channel.
By comparing the received sequence with the original one,
the estimation center can estimate the tampering probabilities
(p, q) using the law of large numbers.

To implement this, we propose a periodic extra-insertion
scheme. Known binary signals are inserted at fixed locations,
and the corresponding received signals are used to estimate
the tampering behavior before proceeding with identification.
Specifically, given a period T , define two non-empty, disjoint
subsets T0 and T1 of the index set T = {1, 2, . . . , T}.

During the l-th period, for each time k ∈ {(l − 1)T +
1, . . . , lT}, the binary output s0k is first transmitted and possi-
bly tampered as described in (4). In addition, if k− lT ∈ T0, a
known signal s0k+1/2 = 0 is transmitted; if k − lT ∈ T1, then
s0k+1/2 = 1 is sent. The received signal sk+1/2 then follows
the tampering model:{

Pr{sk+1/2 = 0 | s0k+1/2 = 1} = p,

Pr{sk+1/2 = 1 | s0k+1/2 = 0} = q.
(14)

At each time k, define the index sets

S0
k =

(
l−1⋃
i=1

iT0

)⋃
([k − (l − 1)T ] ∩ T0) ,

S1
k =

(
l−1⋃
i=1

iT1

)⋃
([k − (l − 1)T ] ∩ T1) . (15)

The tampering probabilities can then be estimated as

q̂k =
1

|S0
k |
∑
i∈S0

k

si+1/2

=
1

l|T0|+ |[k − (l − 1)T ] ∩ T0|
∑
i∈S0

k

si+1/2,

p̂k =
1

|S1
k |
∑
i∈S1

k

(1− si+1/2)

=
1

l|T1|+ |[k − (l − 1)T ] ∩ T1|
∑
i∈S1

k

(1− si+1/2).(16)

These estimates p̂k and q̂k are then used in the identification
algorithm to replace the unknown true values at time k.

Based on the above discussion, we propose the Gradient
Recursive Projection Algorithm for Tampered Binary Obser-
vations with Unknown Probabilities (GRP-TB-UP).

Remark 3.4: In Algorithm 2, the sets T0 and T1 are de-
signed for online estimation of the attack probabilities p and
q, and are predefined and known to both the system and the
estimation center. The sets S0 and S1 correspond to S0

k and S1
k

as defined in (15). The estimation center incrementally records
the positions of inserted signals and their corresponding re-
ceived values, which are then used to estimate the tampering
probabilities. The entire algorithm is recursive and operates in
an online manner.

Remark 3.5: In practice, the fixed insertion sets T0 and T1
may become known to the attacker. To enhance robustness,
one may adopt varying insertion positions over time, denoted
by T0l and T1l for the l-th period. As long as the condition

l∑
j=1

|T0j | = O(l),

l∑
j=1

|T1j | = O(l)

is satisfied, the theoretical guarantees of the algorithm remain
valid.

Algorithm 2 GRP-TB-UP
Require: Period T ; disjoint subsets T0, T1 ⊆ T =

{1, 2, . . . , T}; initialization: S0 = S1 = ∅, parameter
estimate θ̂u1 ∈ Θ.

1: for l = 1, 2, . . . do
2: for k = (l − 1)T + 1, . . . , lT do
3: Step 1: Data reception
4: Transmit the observed data s0k
5: if k − (l − 1)T ∈ T0 then
6: Transmit s0k+1/2 = 0; receive sk+1/2; update S0 =

S0 ∪ {k}
7: else if k − (l − 1)T ∈ T1 then
8: Transmit s0k+1/2 = 1; receive sk+1/2; update S1 =

S1 ∪ {k}
9: end if

10: Step 2: Attack probability estimation
11: Compute the estimates of p and q:

q̂k =
1

|S0|
∑
i∈S0

si+1/2, p̂k =
1

|S1|
∑
i∈S1

(1− si+1/2)

12: Step 3: Recursive projected identification
13: Compute:

s̃uk+1 = β(1− (p̂k + q̂k))

×
(
(1− (p̂k + q̂k))Fk(C − θ̂uTk φk) + q̂k − sk+1

)
(17)

14: Update the parameter estimate:

θ̂uk+1 = ΠΘ

{
θ̂uk + bkφks̃

u
k+1

}
(18)

15: end for
16: end for

2) Convergence analysis: Denote the estimation error by
θ̃uk = θ̂uk − θ, k = 1, . . . . Due to the additional transmission
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of inserted data, the filtration Fk in (2) is modified as

Fk ≜ σ {φi, wi, si}i<k+1 , k ≥ 0,

which ensures that sk+1/2 is Fk-measurable.
The following result establishes the convergence of Algo-

rithm 2.
Theorem 3.3: Consider the system (1) with binary-valued

observation (3), under the defense scheme (14)–(15) and the
data tampering model (4). Let the step size be bk = 1

kγ with
1/2 < γ ≤ 1. If Assumptions A1–A3 and A5 hold, then
Algorithm 2 converges almost surely.

Proof: From (14), we have

P{sk+1/2 = 1} =

{
q, k mod T ∈ T0,
1− p, k mod T ∈ T1.

(19)

Thus, by the law of large numbers and (15)–(16), it follows
that

q̂k → q, p̂k → p, a.s. as k → ∞. (20)

In addition, by the law of the iterated logarithm,

|qk − q| = O

(√
log log⌊ k

T ⌋
⌊ k
T ⌋

)
= O

(√
log log k

k

)
,

|pk − p| = O

(√
log log k

k

)
.

(21)

Define the error term ϵk+1 = s̃uk+1 − s̃k+1. Then from (10),
(17), and the above convergence rates,

ϵk+1 → 0, |ϵk+1| = O

(√
log log k

k

)
. (22)

Now consider the update rule in (18). Using the non-
expansiveness of projection operators, and Proposition I.1 in
Appendix I, we get

∥θ̃uk+1∥2 =
∥∥∥ΠΘ

{
θ̂uk + bkφks̃k+1 + bkφkϵk+1

}
− θ
∥∥∥2

≤
∥∥∥θ̃uk + bkφks̃k+1 + bkφkϵk+1

∥∥∥2
= ∥θ̃uk∥2 + 2bks̃k+1φ

T
k θ̃

u
k +O(b2k) +O(bkϵk+1).

(23)

Substituting (22) and noting that bk = 1
kγ with γ > 1

2 , we
obtain

∥θ̃uk+1∥2

≤ ∥θ̃uk∥2 + 2bks̃k+1φ
T
k θ̃

u
k +O

(
1

k2γ

)
+O

(√
log log k

kγ+1/2

)
= ∥θ̃uk∥2 + 2bks̃k+1φ

T
k θ̃

u
k +O

(√
log log k

kγ+1/2

)
. (24)

Let Bk :=
√
log log k
kγ+1/2 . Clearly, Bk = O(Bk+1) and b2k =

O(Bk). From (17), we have

E[s̃k+1 | Fk] = β(1−p−q)2
(
F (C − φT

k θ̂
u
k )− F (C − φT

k θ)
)
.

(25)

Proceeding as in Theorem 3.1, we derive

E[∥θ̃uk+h∥2] (26)

=

(
1− 2β(1− p− q)2fδ

k+h−1∑
l=k

bl

)
E[∥θ̃uk∥2] +O(Bk+h).

Now observe that
∑∞

k=1 bk = ∞ and

lim
k→∞

Bk∑k−1
l=k−h bl+1

≤ lim
k→∞

Bk

hbk
= lim

k→∞

√
log log k

hk1/2
= 0.

Then, by Lemma I.1, we conclude limk→∞ E[∥θ̃uk∥2] = 0.
Furthermore, using (24) and [41, Lemma 1.2.2], since

E[∥θ̃uk+1∥2 | Fk] ≤ ∥θ̃uk∥2 +O(Bk),

∞∑
k=1

Bk <∞,

we obtain that ∥θ̃uk∥ converges almost surely to a finite limit.
Combined with the fact that E[∥θ̃uk∥2] → 0, we conclude that
θ̃uk → 0 almost surely.

IV. SECOND-ORDER NEWTON IDENTIFICATION
ALGORITHM

In the previous sections, we proposed gradient-based recur-
sive projection algorithms for both known and unknown attack
strategies. These methods adopt scalar step sizes and rely
on first-order information, which facilitates implementation.
However, as pointed out in [43], such first-order methods often
suffer from slow convergence, especially in high-dimensional
problems or when parameter sensitivities vary significantly.
This limitation arises from their inability to utilize curvature
information in the cost function.

To address this, we introduce second-order Newton-type
algorithms that employ matrix-based gains to adaptively scale
the update direction. These algorithms incorporate curvature
information and typically achieve faster convergence and im-
proved estimation accuracy.

A. The Attack Strategy is Known
We first consider the case where the tampering probabilities

(p, q) are known. To estimate the unknown parameter θ in the
binary-valued system (1)–(3) under the attack model (4), we
develop a quasi-Newton recursive identification algorithm. A
projection step is included to ensure the boundedness of the
estimates and to guarantee convergence. Before presenting the
algorithm, we introduce the following definitions.

Definition 4.1: For the Euclidean space Rp (p ≥ 1), the
weighted norm ∥·∥Q associated with a positive definite matrix
Q is defined as

∥x∥2Q = xTQx, ∀x ∈ Rp. (27)
Definition 4.2: For a convex compact set D ⊆ Rp and a

positive definite matrix Q, the projection operator ΠQ(·) is
defined as

ΠQ(x) = arg min
ω∈D

∥x− ω∥Q, ∀x ∈ Rp. (28)

Remark 4.1: The projection operator ΠQ(·) is non-
expansive in the Euclidean norm:

∥ΠQ(x)−ΠQ(y)∥ ≤ ∥x− y∥, ∀x, y ∈ Rp. (29)
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We now present the proposed Newton-type Recursive Pro-
jection Algorithm for Tampered Binary observations with
Known Probabilities (NRP-TB-KP), as summarized in Algo-
rithm 3.

Algorithm 3 NRP-TB-KP

1: Initialize: θ̂1 ∈ Θ, P1 > 0, and β0 = sign(1− (p + q))
min

{
1, inf |x|≤LM+C |1−(p+ q)|f1(x)

}
,

2: for k = 1, 2, . . . do
3: βk = sign(1− (p+ q))×

min
{
|βk−1|, inf |x|≤LM+C |1− (p+ q)|fk+1(x)

}
4: ak = 1

1+β2
kφ

T
k Pkφk

5: s̃k+1 = (1− (p+ q))Fk(C − θ̂Tk φk) + q − sk+1

6: Pk+1 = Pk − β2
kakPkφkφ

T
k Pk

7: θ̂k+1 = ΠP−1
k+1

(
θ̂k + akβkPkφks̃k+1

)
8: end for

Remark 4.2: By the matrix inversion formula [41], the
inverse of Pk can be updated recursively as

P−1
k+1 = P−1

k + β2
kφkφ

T
k . (30)

Since P1 is positive definite, P−1
k remains positive definite

for all k, which ensures that the projection operator ΠP−1
k

in
Algorithm 3 is well-defined.

Since φk is Fk-measurable, the conditional expectation of
yk+1 given Fk is

E(yk+1 | Fk) = θTφk + E(wk+1 | Fk), (31)

which serves as the optimal predictor in the mean-square
sense. Replacing the true parameter with the estimate θ̂k, the
adaptive predictor becomes

ŷk+1 = θ̂Tk φk + E(wk+1 | Fk). (32)

Letting θ̃k = θ − θ̂k, the instantaneous regret, defined as the
squared deviation between the optimal and adaptive predictors,
is

Rk = (E(yk+1 | Fk)− ŷk+1)
2
=
(
θ̃Tk φk

)2
. (33)

A small value of Rk is desirable and plays a crucial role in
evaluating the performance of adaptive control algorithms.

The following three theorems summarize the main theoreti-
cal results of this subsection. Without requiring PE condition,
we establish asymptotic bounds for the estimation error, cu-
mulative regret, and tracking performance under Algorithm 3.

Theorem 4.1 (Estimation Error Bound): Under
Assumptions A1, A2, A3(a), and A5, the estimation
error generated by Algorithm 3 satisfies

∥θ̃n+1∥2 = O

(
log λmax(P

−1
n+1)

λmin(P
−1
n+1)

)
, a.s. (34)

where θ̃k = θ − θ̂k.
Theorem 4.2 (Regret Bound): Let Assumptions A1, A2,

A3(a), and A5 hold. Then the cumulative regret, defined by
Rk = (θ̃Tk φk)

2, satisfies
n∑

k=0

Rk = O

(
log |P−1

n+1|
β2
n

)
, a.s.

Remark 4.3: According to the update rule of βn in Algo-
rithm 3, the regret bound becomes unbounded as 1−(p+q) →
0. This is expected, since when p + q → 1, it becomes
increasingly difficult to distinguish between tampered and
genuine signals, which severely undermines the identifiability
of the system.

Theorem 4.3 (Tracking Error in Adaptive Control): Under
the assumptions of Theorem 4.2, suppose that the noise
densities {fk(x)} satisfy

sup
k

E [|wk|α | Fk−1] <∞, a.s., for some α > 4, (35)

and the regressor φk is designed such that

θ̂Tk φk +

∫ ∞

−∞
xfk(x) dx = y∗k+1, (36)

for any bounded reference signal {y∗k+1}. Then the average
tracking error

Jn =
1

n

n−1∑
k=0

(yk+1 − y∗k+1)
2 (37)

satisfies ∣∣∣∣∣Jn − 1

n

n∑
k=1

σ2
k

∣∣∣∣∣ = O

(√
log logn

n

)
, a.s., (38)

where σ2
k = E

[
(wk − E(wk | Fk−1))

2 | Fk−1

]
.

Proof: The proofs of Theorems 4.1–4.3 are provided in
Appendix II.

B. The Attack Strategy is Unknown

We now turn to the case where the tampering parameters
(p, q) are unknown. Following a similar framework to the
first-order case, we estimate p and q online in parallel with
the system identification process. The proposed Newton-type
Recursive Projection Algorithm for Tampered Binary observa-
tions with Unknown Probabilities (NRP-TB-UP) is presented
in Algorithm 4. This algorithm offers similar theoretical guar-
antees to the case with known tampering parameters.

Theorem 4.4: Consider system (1) with binary-valued ob-
servations (3), operating under the defense scheme (14)–(15)
and subjected to the data tampering attack (4). Suppose
that Assumptions A1, A2, A3(a), and A5 hold. Then, the
estimation error produced by Algorithm 4 satisfies

∥θ̃un+1∥2 = O

(
log λmax(P

−1
n+1)

λmin(P
−1
n+1)

)
, a.s., (39)

where θ̃uk = θ − θ̂uk . Moreover, the cumulative regret, defined
as Rk = (θ̃uTk φk)

2, admits the bound

n∑
k=0

Rk = O

(
log |P−1

n+1|
β2
n

)
, a.s. (40)

Proof: Define the stochastic Lyapunov function:

V u
k = θ̃uTk P−1

k θ̃uk .
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Algorithm 4 NRP-TB-UP
Require: Period T , disjoint subsets T0, T1 ⊆ T =

{1, 2, . . . , T}, S0 = S1 = ∅, initial estimate θ̂1 ∈ Θ,
P1 > 0.

1: for l = 1, 2, . . . do
2: for k = (l − 1)T + 1, . . . , lT do
3: Step 1: Data reception
4: Transmit the observed data s0k
5: if k − (l − 1)T ∈ T0 then
6: Transmit s0k+1/2 = 0, receive sk+1/2, and update

S0 = S0 ∪ {k}
7: else if k − (l − 1)T ∈ T1 then
8: Transmit s0k+1/2 = 1, receive sk+1/2, and update

S1 = S1 ∪ {k}
9: end if

10: Step 2: Online estimation of p, q

q̂k =
1

|S0|
∑
i∈S0

si+1/2, p̂k =
1

|S1|
∑
i∈S1

(1− si+1/2)

11: Step 3: Recursive parameter update

βk = sign(1− (p̂k + q̂k))

·min

{
|βk−1|, inf

|x|≤LM+C
fk+1(x)(1−(p̂k+q̂k))

}
ak =

1

1 + β2
kφ

T
k Pkφk

s̃uk+1=(1−(p̂k + q̂k))Fk(C−θ̂uTk φk)+q̂k−sk+1

Pk+1 = Pk − β2
kakPkφkφ

T
k Pk

θ̂uk+1 = ΠP−1
k+1

(
θ̂uk + akβkPkφks̃

u
k+1

)
12: end for
13: end for

Let ϵk+1 = s̃k+1 − s̃uk+1, where s̃k+1 is given in Algorithm
3. Define

εk+1 = (1− (p+ q))Fk(C − θTφk) + q − sk+1, (41)
ψk = (1− (p+ q))

·
(
Fk+1(C − θ̂Tk φk)− Fk+1(C − θTφk)

)
. (42)

Following the argument in (59), we obtain

V u
k+1 ≤ θ̃uTk P−1

k θ̃uk−2βkθ̃
uT
k φkψk + β2

k(θ̃
uT
k φk)

2

+2akβ
2
k(ψk + ϵk+1)φ

T
k Pkφkεk+1

−2βkφ
T
k θ̃

u
k (εk+1 − ϵk+1)+akβ

2
kφ

T
k Pkφkε

2
k+1

+akβ
2
kφ

T
k Pkφkϵ

2
k+1 − 2akβ

2
kφ

T
k Pkφkψkϵk+1

+akβ
2
kφ

T
k Pkφk. (43)

According to (21), there exists K ∈ N+ such that for all
k > K, we have sign(1− (pk + qk)) = sign(1− (p+ q)), and
|(1 − (pk + qk))| < 4

3 |1 − (p + q)|. Based on the definition
of βk in Algorithm 4, and using (57) together with the mean
value theorem, it follows that

2βkθ̃
uT
k φkψk = 2βk(θ̃

uT
k φk)

2fk(ξk)(1− (p+ q))

≥ 2|p+ q − 1|
|(1− (pk + qk))|

β2
k(θ̃

uT
k φk)

2 ≥ 3

2
β2
k(θ̃

uT
k φk)

2,
(44)

where ξk lies between C − θTφk and C − θ̂Tk φk.
Furthermore, by (22) and the fact that |ψk| < 1, for

sufficiently large n, we have

akβ
2
kφ

T
k Pkφkϵ

2
k+1 − 2akβ

2
kφ

T
k Pkφkψkϵk+1 + akβ

2
kφ

T
k Pkφk

= O(akβ
2
kφ

T
k Pkφk), (45)

akβ
2
k(ψk + ϵk+1)φ

T
k Pkφkεk+1 = O(akβ

2
kψkφ

T
k Pkφkεk+1).

Summing both sides of (43) and applying (44)–(45), we
obtain

V u
n+1 ≤ V u

0 − 1

2

n∑
k=0

β2
k(θ̃

uT
k φk)

2 + 2

n∑
k=0

βkφ
T
k θ̃

u
k ϵk+1

+2O

(
n∑

k=0

akβ
2
kψkφ

T
k Pkφkεk+1

)
− 2

n∑
k=0

βkφ
T
k θ̃

u
kεk+1︸ ︷︷ ︸

I

+O

(
n∑

k=0

akβ
2
kφ

T
k Pkφk

)
+

n∑
k=0

akβ
2
kφ

T
k Pkφkε

2
k+1︸ ︷︷ ︸

II

. (46)

From (41) and (8), we know that

E(εk+1 | Fk) = 0, sup
k

E
[
|ωk+1|2 | Fk

]
<∞, a.s.,

which implies that {εk,Fk} forms a martingale difference
sequence with finite second moment.

Following the arguments in [44], and using Assumption
A3(a) supk≥1 ∥φk∥ ≤M <∞ along with (22), we have

2

n∑
k=0

βkφ
T
k θ̃

u
k ϵk+1 = o

(
n∑

k=0

β2
k(θ̃

uT
k φk)

2

)
+O(1),

I = o

(
n∑

k=0

β2
k(θ̃

uT
k φk)

2

)
+O(1),

II = O
(
log |P−1

n+1|
)
.

Combining the above estimates yields

θ̃uTn+1P
−1
n+1θ̃

u
n+1 +

n∑
k=0

β2
k(θ̃

uT
k φk)

2 = O(log |P−1
n+1|), a.s.

Finally, since {βk} is non-increasing, the results in (39) and
(40) follow.

Similar to Theorem 4.3, Theorem 4.4 also implies the
following result on the tracking error in adaptive control of
binary FIR systems under unknown tampering attacks.

Theorem 4.5: Consider system (1) with binary-valued ob-
servations (3), operating under the defense scheme (14)–(15)
and subjected to the data tampering attack (4). Suppose the
conditions of Theorem 4.3 hold, and that the regressor φk is
constructed as in Theorem 4.3 for a bounded reference signal
{y∗k+1}. Then, the average tracking error satisfies∣∣∣∣∣Jn − 1

n

n∑
k=1

σ2
k

∣∣∣∣∣ = O

(√
log logn

n

)
, a.s.

where σ2
k = E

[
(wk − E(wk | Fk−1))

2 | Fk−1

]
.
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Fig. 2. Convergence of the estimation shown by a trajectory of θ̂n+1.
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Fig. 3. Convergence rate of the estimation shown by a trajectory of
kθ̃T

k θ̃k/ ln k.

V. NUMERICAL SIMULATIONS AND PRACTICAL CASE
STUDY

A. Numerical simulations

This section presents three numerical simulations to validate
the convergence of the first-order and second-order algorithms,
as well as the tracking error bounds in adaptive control.
Example 1. Consider the system yk+1 = φT

k θ + wk+1 with
the binary observation

sk = I[yk≤C] =

{
1, yk ≤ C

0, otherwise ,

where θ = [3,−1]T is unknown but known as in Θ = {(x, y) :
|x| < 6, |y| < 6}. The threshold C = 1, and the system
noise wk+1 obeys the standard normal distribution. The inputs
φk = {uk, uk−1} with uk obeying the uniform distribution
of N(0, 2). Algorithm (10)-(11) has a step size of β = 80,
bk = 1/kγ with γ = 1, 0.8, and an initial value of θ0 =

[1, 1]T . All the simulations are looped 50 times. Figure 2 and
3 present the estimation results of the algorithm for attack
strategy shown in (4) as p = 0.2, q = 0.3 and p = 0.8, q = 0.9,
respectively. From Figure 2, it can be seen that even when
the tampering probability is close to 1, the proposed recursive
defense algorithm still converges to the true value (Theorem
3.1). Figure 3 shows the convergence rate for γ = 1 and γ =
0.8, validating the results derived in Theorem 3.2. We also
consider the case where the attack strategy is unknown, and the
attack probabilities p and q are estimated online. The estimator
periodically updates p and q using auxiliary data collected at
the time indices T0 = {1, 3, 5, 7, 9} and T1 = {2, 4, 6, 8, 10}
within each period of length T = 20. In the simulation, two
attack scenarios are tested: (p, q) = (0.2, 0.3) and (p, q) =
(0.8, 0.9). The simulation results are shown in Figure 4, where
the parameter estimates θ̂k converge to the true values, and
the online estimates of p and q gradually approach their true
values as the sample size increases. These results validate the
Theorem 3.3.
Example 2. This example is to validate the theoretical analysis
for Algorithm 4. We conduct numerical simulations with the
same setting as Example 1. The regression vector is defined as
φk = [uk, uk−1]

⊤, with uk ∼ N (0, σ2
k) and σk = k−1/8. At

each time step, the binary observation sk is possibly flipped by
an adversary with known probabilities p = 0.1 and q = 0.2.
The online estimates of p and q are computed based on
partial feedback under a periodic schedule. Figure 5 presents
the simulation results over N = 20000 time steps. Subplot
(a) shows the parameter estimates θ̂1 and θ̂2 converging to
their true values. Subplot (b) presents the squared estimation
error ∥θ̃k∥2 along with its theoretical bound O(log k/k3/4),
validating Theorem 4.4. Subplot (c) depicts the cumulative
regret

∑n
k=0Rk and confirms the bound O(log k/β2

n) as stated
in Theorem 4.4. Subplot (d) demonstrates the convergence
of the online estimates of the attack probabilities p and
q, verifying the effectiveness of the periodic extra-insertion
scheme.
Example 3. We also consider the binary observation model
with unknown parameter θ = [3,−1]⊤, Gaussian noise wk ∼
N (0, 1), and regressor φk = [uk, uk−1]

⊤. We implement the
NRP-TB-UP algorithm to estimate θ online using only binary
feedback, while simultaneously designing a control input uk
such that the system output yk tracks a reference signal y∗k =
4 sin(2πk/18000). The control law solves

θ̂⊤k φk +

∫
xfk(x) dx = y∗k+1,

where fk is the density of wk. According to Theorem 4.5, the
average tracking error Jn = 1

n

∑n
k=1(yk − y∗k)

2 is expected

to satisfy |Jn − σ2| = O
(√

log logn
n

)
, a.s. To verify

this, we test two attack settings: (p, q) = (0.2, 0.3) and
(p, q) = (0.8, 0.9). Each scenario uses N = 20000 steps, with
initialization θ̂1 = [1, 1]⊤ and random u0. Results are shown
in Figure 6.
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Fig. 4. Convergence of parameter estimates θ̂k and attack probability estimates (p̂k, q̂k) under unknown attack strategies with (p, q) =
(0.2, 0.3) and (p, q) = (0.8, 0.9).

Fig. 5. Simulation results of Algorithm 4. (a) Parameter estimates; (b) Estimation error and its theoretical bound; (c) Cumulative regret vs theoretical
rate; (d) Online estimation of attack probabilities.
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Fig. 6. Adaptive tracking with binary feedback under two attack levels. (a1,a2) Output yk tracks reference y∗
k under (p, q) = (0.2, 0.3) and

(0.8, 0.9). (b1,b2) Normalized error |Jn−σ2|√
log log n/n

.
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Thresholding
s0k+1 = I[yk+1 ≤ C]

Emission Model
yk+1 = φT

k θ + wk+1

Tampering Process
Pr{sk = 0 | s0k = 1} = p

Tampered Set-Valued Identification

Predicted
Excessive/
Compliant

Fig. 7. Modeling pipeline for tampered emission data and binary
classification.

B. Practical Case: Vehicle Emissions Inspection Fraud
Vehicle emission control, especially for heavy-duty diesel

vehicles, plays a critical role in reducing air pollution. How-
ever, fraudulent practices in emissions testing—such as us-
ing cheat devices to manipulate onboard diagnostic (OBD)
systems and falsify excessive emission data—pose serious
challenges to environmental monitoring and regulatory en-
forcement [45], [46]. To illustrate the practical relevance of
our proposed tampering detection algorithm, we examine a
real-world case involving in-use vehicle emissions data. This
problem can be naturally formulated within our tampering
framework, as falsified emission reports are essentially mis-
classified compliance labels. We use OBD monitoring data col-
lected in Hefei, China, from August 8 to November 24, 2020.
The dataset includes more than 140,000 records from over 100
heavy-duty diesel vehicles, containing both emission measure-
ments and GPS information. Each vehicle was observed for
approximately 3 hours, with data recorded every 5 seconds,
covering a geographic range between latitudes 31.754772–
31.785486 and longitudes 117.192519–117.245141.

Given the dynamic driving conditions and the complex
temporal structure of emission signals, traditional static models
often fail to detect anomalies effectively. To address this, we
first process the raw OBD signals using a Transformer-based
neural network [47], which captures long-range dependencies
and nonlinear patterns. This yields a sequence of feature
vectors φk, each representing the system state at time k.

These features are then used in the model introduced in
Section 2.1. We apply the regression model (1) to estimate
the predicted emission yk+1, followed by a thresholding
operation (3) to assign binary compliance labels s0k. A label of
s0k = 1 indicates an excessive emission event, i.e., predicted
emissions exceeding the regulatory threshold C.

However, in real-world inspection scenarios, such binary
labels may be deliberately falsified. To model this, we adopt
the tampering mechanism (4), where p denotes the probability
of misreporting excessive emissions as compliant, and q the re-
verse. This completes our pipeline—from raw OBD signals to
tampering-aware binary classification—as shown in Figure 7.

To assess the effectiveness of the proposed tampering-aware
algorithms, we present two sets of simulation results. Figure 8
shows confusion matrices for five classification algorithms:
support vector machine (SVM), logistic regression (Logistic),
decision tree (Tree), NRP-TB-KP, and GRP-TB-KP at tam-
pering probabilities p = 0.3. The top row results are based
on original raw data, while the bottom row represents results

after extracting features with a Transformer. Clearly, classi-
fication using raw data alone yields relatively low accuracy,
emphasizing the need for effective feature extraction meth-
ods. After Transformer-based feature extraction, classification
accuracy improves across all algorithms. Specifically, the pro-
posed methods based on Transformer-extracted features, NRP-
TB-KP and GRP-TB-KP, outperform the baseline classifiers.
Among these, the NRP-TB-KP algorithm achieves the highest
accuracy overall, highlighting its effectiveness in addressing
label tampering and enhancing classification robustness.

Figure 9 presents scatter plots corresponding to the con-
fusion matrices in Figure 8. Clearly, the proposed NRP-
TB-KP algorithm achieves more accurate classification than
the compared methods. The points labeled “Tam” represent
cases with falsified excessive emissions, which are effectively
identified and corrected by our proposed approach.

Figure 10 shows the average accuracy and computation time
of different methods under varying tampering probabilities
(p = 0 to 0.9). Observations include: (i) Newton-based
methods generally achieve higher accuracy, whereas gradient-
based methods have shorter computation times; (ii) ignoring
tampering consistently leads to decreased performance; and
(iii) accuracy typically declines as the tampering probability
increases, except the case p = 0.1. Nonetheless, methods
explicitly incorporating tampering probabilities consistently
outperform those that do not. These results highlight the
importance of considering tampering in emission detection
tasks and illustrate the trade-off between accuracy and com-
putational efficiency in practical scenarios.

VI. CONCLUDING REMARKS

This paper investigated the problem of parameter estimation
and adaptive control for systems with binary observations un-
der data tampering attacks. We developed both gradient-based
and second-order Quasi-Newton identification algorithms that
are applicable when the attack strategy is either known or
unknown. The proposed methods ensure asymptotic conver-
gence of parameter estimates and do not rely on PE condition.
In addition, the second-order algorithm was integrated into
an adaptive control framework, allowing for explicit tracking
error bounds in binary FIR systems even under unknown
attacks. Simulation results show the robustness and efficiency
of the algorithms, and a vehicle emission control task is used
to test their ability.

Future work may extend the framework to multi-agent
systems, consider time-varying attack models, or apply it to
networked control systems with quantized or event-triggered
communication.
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APPENDIX I
PROOFS OF THEOREM 3.1 AND 3.2

Recall the estimate error θ̃k = θ̂k − θ. First, we give the
following useful lemmas.

Proposition I.1: The projection operator given by Defini-
tion 3.1 follows

∥ΠΩ(x)−ΠΩ(y)∥ ≤ ∥x− y∥, ∀x, y ∈ Rn.

Lemma I.1: [48] Let {pk}, {qk} and {αk} be real se-
quences satisfying pk+1 ≤ (1 − qk)pk + αk, where 0 <
qk ≤ 1,

∑∞
k=0 qk = ∞, αk ≥ 0, and limk→∞

αk

qk
= 0.

Then, lim supk→∞ pk ≤ 0.

Lemma I.2: [49] For 0 < b ≤ 1, a > 0, k0 ≥ 0 and
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sufficiently large l, we have
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)a
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k∑
l=1

k∏
i=l

(
1− a

(i+ k0)
b

)
O

(
1

(l + k0)
2b

)
= O

(
1

kb

)
,

b ∈ (0, 1).
Lemma I.3: [50] For any given positive integer l and a, b ∈

R, the following results hold

k∑
l=1

k∏
i=l+1

(
1− a

i

) 1

l1+b
=


O
(

1
ka

)
, a < b

O
(
ln k
ka

)
, a = b

O
(

1
kb

)
, a > b.

Lemma I.4: If Assumptions A1–A3 hold, then

∥θ̃k+l − θ̃k∥ = O(bk+l), for k, l ∈ N.
Proof: First, we have

∥θ̃k+l − θ̃k∥ = ∥θ̂k+l − θ̂k∥ =

∥∥∥∥∥∥
l∑

j=1

(θ̂k+j − θ̂k+j−1)

∥∥∥∥∥∥
≤

l∑
j=1

∥∥∥(θ̂k+j − θ̂k+j−1)
∥∥∥ . (47)

Since 0 ≤ (1 − (p + q))Fk(C − θTφk) + q ≤ 1, it
follows that |s̃k| ≤ β. Combining this with Proposition I.1
and the condition ∥ϕk∥ ≤ M , we obtain ∥θ̂l+1 − θ̂l∥ ≤
bl+1∥ϕl+1s̃l+1∥ ≤ bkβM for l ≥ 1. This result, together with
(47) and Assumption 4, implies the lemma.
Proof of Theorem 3.1. By s̃2k ≤ β2, Proposition I.1 and (10),
we have

∥θ̃k+1∥2 ≤ ∥θ̃k∥2 + 2bks̃k+1ϕ
T
k θ̃k + b2k∥ϕk∥2β2

= ∥θ̃k∥2 + 2bks̃k+1ϕ
T
k θ̃k +O(b2k). (48)

From (8) and (11), it follows that

E[s̃k+1|Fk]

= β(1− p− q)2
(
F (C − ϕTk θ̂k)− F (C − ϕTk θ)

)
. (49)

This together with Assumption 2 and the differential mean
value theorem, it leads to

E
[
2bks̃k+1ϕ

T
k θ̃k|Fk

]
= 2bkϕ

T
k θ̃kE[s̃k+1|Fk]

= 2bkϕ
T
k θ̃kβ(1− p− q)2

(
Fk(C − ϕTk θ̂k)− Fk(C − ϕTk θ)

)
= −2bkβ(1− p− q)2fk(ξk)θ̃

T
k ϕkϕ

T
k θ̃k

≤ −2bkβ(1− p− q)2fθ̃Tk ϕkϕ
T
k θ̃k, (50)

where ξk is in the interval between C − ϕTk θ̂k and C − ϕTk θ
such that Fk(C−ϕTk θ̂k)−Fk(C−ϕTk θ) = fk(ξk)θ̃

T
k ϕkϕ

T
k θ̃k.

Taking the expectation on both sides of (48) and substituting

(50) into it, we can obtain

E∥θ̃k+1∥2 ≤ E∥θ̃k∥2 + 2bkEs̃k+1ϕ
T
k θ̃k +O(b2k)

= E∥θ̃k∥2 + E
[
E
[
2bks̃k+1ϕ

T
k θ̃k|Fk

]]
+O(b2k).

≤ E∥θ̃k∥2 − 2bkβ(1− p− q)2fE[θ̃Tk ϕkϕTk θ̃k]
+O(b2k). (51)

By iterating (51) h times and noting bk = O(bk+1), we obtain

E∥θ̃k+h∥2

≤ E∥θ̃k∥2 − 2β(1− p− q)2fE

[
k+h−1∑
l=k

[blθ̃
T
l ϕlϕ

T
l θ̃l]

]
+O(b2k+h)
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[
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[blθ̃
T
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T
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]
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l=k

[bl(θ̃l − θ̃k)
Tϕlϕ

T
l (θ̃l − θ̃k)]

]
+O(b2k+h). (52)

By Lemma I.4 and (12), the last two terms of (51) are of order
O(b2k+h). In addition,

E

[
k+h−1∑
l=k

[blθ̃
T
k ϕlϕ

T
l θ̃k]

]

= E

[
θ̃Tk E

[
k+h−1∑
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blϕlϕ
T
l
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]
θ̃k

]
. (53)

By Assumption A3, we have

E

[
k+h−1∑
l=k

blϕlϕ
T
l
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]

=
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h
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≥ δ
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l=k

blI +O(b2k+h). (54)

Substituting (53) and (54) into (52) yields

E∥θ̃k+h∥2 (55)

≤ E∥θ̃k∥2 − 2β(1− p− q)2fδ

k+h−1∑
l=k

blE∥θ̃k∥2 +O(b2k+h)

=

(
1− 2β(1− p− q)2fδ

k+h−1∑
l=k

bl

)
E∥θ̃k∥2 +O(b2k+h).

Then, based on Lemma I.1 and Assumption A4, and noting∑∞
k=1 bk = ∞ and limk→∞

b2k∑k−1
l=k−h bl+1

= 0, it follows that

limk→∞ E[∥θ̃k∥2] = 0.
On the other hand, by (51) we have E[∥θ̃k+1∥2|Fk] ≤

∥θ̃k∥2 + O(b2k), which together with [41, Lemma 1.2.2] and
∞∑
k=1

b2k < ∞ implies that ∥θ̃k∥ converges to a bounded

limit a.s. Notice that limk→∞ E[θ̃Tk θ̃k] = 0. Then, there
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is a subsequence of θ̃k that converges almost surely to 0.
Consequently, θ̃k almost surely converges to 0. □

Proof of Theorem 3.2. When bk = 1
kγ , γ ∈ (1/2, 1), letting

α = 2β(1− p− q)2fδ and based on (55), we have

E∥θ̃k∥2 ≤

(
1− α

k−1∑
l=k−h

1

(l + 1)γ

)
E∥θ̃k∥2 +O

(
1

k2γ

)
,

≤
(
1− αh

kγ

)
E∥θ̃k−h∥2 +O

(
1

k2γ

)

≤
⌊ k−K

h ⌋−1∏
l=0

(
1− αh

(k − lh)γ

)
E
∥∥∥θ̃k−⌊ k−K

h ⌋h
∥∥∥2

+

⌊ k−K
h ⌋∑

l=1

l−1∏
j=0

(
1− αh

(k − jh)γ

)
O

(
1

(k − lh)2γ

)

≤
⌈ k

h⌉∏
l=⌈K

h ⌉+κ+1

(
1− αh

(lh)γ

)
E
∥∥∥θ̃k−⌊ k−K

h ⌋h
∥∥∥2

+

⌊ k
h⌋−1∑

l=⌈K
h ⌉+1

⌈ k
h⌉∏

j=⌈K
h ⌉+κ+l+1

(
1− αh

(jh)γ

)
O

(
1

(lh)2γ

)

≤
⌈ k

h⌉∏
l=⌈K

h ⌉+κ+1

(
1− αh1−γ

lγ

)
E
∥∥∥θ̃k−⌊ k−K

h ⌋h
∥∥∥2

+

⌊ k
h⌋−1∑

l=⌈K
h ⌉+1

⌈ k
h⌉∏

q=⌈K
h ⌉+κ+l+1

(
1− αh1−γ

jγ

)
O

(
1

l2γ

)
,

where κ =
⌈
k−K
h

⌉
−
⌊
k−K
h

⌋
. This together with Lemma I.2
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+

⌊ k−K
h ⌋∑

l=1

l−1∏
q=0

(
1− αh

k − qh

)
O

(
1

(k − lh)2

)

≤
⌈ k

h⌉∏
l=⌈ k

h⌉+κ+1

(
1− αh

lh

)
E∥θ̃k−⌊ k−K

h ⌋h∥∥
2

+

⌊ k
h⌋−1∑

l=⌈K
h ⌉+1

⌈ k
h⌉∏

q=⌈K
h ⌉+κ+l+1

(
1− αh

qh

)
O

(
1

(lh)2

)

≤
⌈K

h ⌉+κ+1∏
l=

(
1− α

l

)
E∥θ̃k−⌊ k−K

h ⌋h∥∥
2

+

⌊ k
h⌋−1∑

l=⌈K
h ⌉+1

⌈ k
h⌉∑

q=⌈K
h ⌉+κ+l+1

(
1− α

q

)
O

(
1

l2

)
,

where κ =
⌈
k−K
h

⌉
−
⌊
k−K
h

⌋
. Since β > 1

2(1−p−q)2fδ , i.e.

α > 1. Thus, by Lemma I.3, we have E
∥∥∥θ̃k∥∥∥2 = O

(
1
k

)
. This

completes this part’s proof. □

APPENDIX II
PROOFS OF THEOREM 4.1-4.3

For convenience, we introduce the notation

εk+1 = (1− (p+ q))Fk(C − θTφk) + q − sk+1, (56)
ψk = (1− (p+ q))(

Fk+1(C − θ̂Tk φk)− Fk+1(C − θTφk)
)
. (57)

We then give the following lemma.
Lemma II.1: Let Assumptions A1, A2, A3(a), and A5 be

satisfied. Then the parameter estimate given by Algorithm 3
has the following property as n→ ∞:

θ̃Tn+1P
−1
n+1θ̃n+1 + β2

n

n∑
k=0

(
θ̃Tk φk

)2
= O

(
log |P−1

n+1|
)
, a.s.

(58)
Proof: Recall θ̃k = θ − θ̂k and define the stochastic

Lyapunov function:

Vk = θ̃Tk P
−1
k θ̃k.

By (29) and noting akP
−1
k+1Pkφk = φk, P−1

k+1 = P−1
k +

β2
kφkφ

T
k and |ψk| ≤ 1, we get

Vk+1 ≤ θ̃Tk P
−1
k θ̃k−2βkθ̃

T
k φkψk + β2

k(θ̃
T
k φk)

2

+2akβ
2
kψkφ

T
k Pkφkεk+1 − 2βkθ̃

uT
k φkεk+1

+akβ
2
kφ

T
k Pkφk + akβ

2
kφ

T
k Pkφkε

2
k+1. (59)

By the definition of βk in Algorithm 3, (57), and the Mean
Value Theorem, it follows

2βkθ̃
T
k φkψk = 2βk(θ̃

T
k φk)

2fk(ξk)(1−(p+q)) ≥ 2β2
k(θ̃

T
k φk)

2

where ξk lies between C − θTφk and C − θ̂Tk φk. Then by
summing up both sides of (59), it becomes

Vn+1 ≤ V0 −
n∑

k=0

β2
k(θ̃

T
k φk)

2

+2

n∑
k=0

akβ
2
kψkφ

T
k Pkφkεk+1 − 2

n∑
k=0

βkθ̃
uT
k φkεk+1︸ ︷︷ ︸

I

+

n∑
k=0

akβ
2
kφ

T
k Pkφk +

n∑
k=0

akβ
2
kφ

T
k Pkφkε

2
k+1︸ ︷︷ ︸

II

. (60)

From (56) and (8), it follows E(εk+1 | Fk) = 0, which means
{εk,Fk} is a martingale difference sequence. Similar to the



16 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

proof in [44] and noting Assumption A3(a) supk≥1 ∥φk∥ ≤
M <∞, we have

I = o

(
n∑

k=0

β2
k(θ̃

T
k φk)

2

)
+O(1)

II = O
(
log |P−1

n+1|
)
. (61)

Combining all terms, we obtain

θ̃Tn+1P
−1
n+1θ̃n+1 +

n∑
k=0

β2
k(θ̃

T
k φk)

2 = O(log |P−1
n+1|), a.s.

Finally, since {βk} is a non-increasing sequence, we conclude
(58).
Proof of Theorem 4.1 and 4.2. Directly obtained from Lemma
II.1.
Proof of Theorem 4.3. By Lemma II.1, the proof follows
similarly to [51, Theorem 3].
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